Flexible Gates Generate Occluded Intermediates in the Transport Cycle of LacY☆
نویسندگان
چکیده
The major facilitator superfamily (MFS) transporter lactose permease (LacY) alternates between cytoplasmic and periplasmic open conformations to co-transport a sugar molecule together with a proton across the plasma membrane. Indirect experimental evidence suggested the existence of an occluded transition intermediate of LacY, which would prevent leaking of the proton gradient. As no experimental structure is known, the conformational transition is not fully understood in atomic detail. We simulated transition events from a cytoplasmic open conformation to a periplasmic open conformation with the dynamic importance sampling molecular dynamics method and observed occluded intermediates. Analysis of water permeation pathways and the electrostatic free-energy landscape of a solvated proton indicated that the occluded state contains a solvated central cavity inaccessible from either side of the membrane. We propose a pair of geometric order parameters that capture the state of the pathway through the MFS transporters as shown by a survey of available crystal structures and models. We present a model for the occluded state of apo-LacY, which is similar to the occluded crystal structures of the MFS transporters EmrD, PepTSo, NarU, PiPT and XylE. Our simulations are consistent with experimental double electron spin–spin distance measurements that have been interpreted to show occluded conformations. During the simulations, a salt bridge that has been postulated to be involved in driving the conformational transition formed. Our results argue against a simple rigid-body domain motion as implied by a strict “rocker-switch mechanism” and instead hint at an intricate coupling between two flexible gates.
منابع مشابه
Apo-intermediate in the transport cycle of lactose permease (LacY).
The lactose permease (LacY) catalyzes coupled stoichiometric symport of a galactoside and an H(+). Crystal structures reveal 12, mostly irregular, transmembrane α-helices surrounding a cavity with sugar- and H(+)- binding sites at the apex, which is accessible from the cytoplasm and sealed on the periplasmic side (an inward-facing conformer). An outward-facing model has also been proposed based...
متن کاملMajor facilitator superfamily porters, LacY, FucP and XylE of Escherichia coli appear to have evolved positionally dissimilar catalytic residues without rearrangement of 3-TMS repeat units.
Based on alleged functional residue correspondences between FucP and LacY, a recent study has resulted in a proposed model of 3-TMS unit rearrangements [Madej et al.: Proc Natl Acad Sci USA 2013;110:5870-5874]. We rebut this theory, using 7 different lines of evidence. Our observations suggest that these two transporters are homologous throughout their lengths, having evolved from a common ance...
متن کاملCorrection for Smirnova et al., Transient conformers of LacY are trapped by nanobodies.
The lactose permease of Escherichia coli (LacY), a highly dynamic membrane protein, catalyzes symport of a galactopyranoside and an H(+) by using an alternating access mechanism, and the transport cycle involves multiple conformational states. Single-domain camelid nanobodies (Nbs) developed against a LacY mutant immobilized in an outward (periplasmic)-open conformation bind to the flexible WT ...
متن کاملDelineating Electrogenic Reactions during Lactose/H+ Symport†
Electrogenic reactions accompanying downhill lactose/H(+) symport catalyzed by the lactose permease of Escherichia coli (LacY) have been assessed using solid-supported membrane-based electrophysiology with improved time resolution. Rates of charge translocation generated by purified LacY reconstituted into proteoliposomes were analyzed over a pH range from 5.2 to 8.5, which allows characterizat...
متن کاملSIMULATED ANNEALING ALGORITHM FOR SELECTING SUBOPTIMAL CYCLE BASIS OF A GRAPH
The cycle basis of a graph arises in a wide range of engineering problems and has a variety of applications. Minimal and optimal cycle bases reduce the time and memory required for most of such applications. One of the important applications of cycle basis in civil engineering is its use in the force method to frame analysis to generate sparse flexibility matrices, which is needed for optimal a...
متن کامل